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Overview

Timeline Barriers
e New SOW start: Sept. 2012 e Emissions controls

— Catalyst fundamentals,

e Current end date: Sept. 2015 — Reactions & mechanistic insights
e ~13% Complete — Catalyst models (design tools & imbedded)
— Control strategies & OBD
Budget o Corsnht?usti'on. Efficiency N
- — Shift emissions tradeoff to fuel efficiency
e 1:1 DOE:Cummins cost share Durabilit
. e Durability
« DOE Fundlng. — Enhanced durability via knowledge-based
— FY2012: $450k controls
— FY2013: $400k
o Cost

— Lower catalyst & sensor costs
— Lower development costs

Partners

e ORNL & Cummins Inc.
e Several informal collaborators




Objectives & Relevance

Elucidate Practical & Basic Catalyst Nature

for enabling improved Modeling, Design & Control
. y,

Objectives

e Develop diagnostics to advance applied & basic catalyst insights
e Understand parameters controlling distributed NH, storage

e Model distributed steady state SCR performance

Relevance — Detailed Catalyst Insights impact:

e Design models

e Control strategies & models

e NH; dosing control

e Required engineering margins (engine-efficiency vs. -emissions tradeoffs)
e System capital & operation costs




Milestones

v2012 Milestones:

e Improve instrumental methods for transient analysis of catalyst state
— Instantaneous NH, coverage & loading rate, instantaneous conversion

2013 Milestone (on target for Sept. 2013 completion):

e Assess distributed performance of degreened & field-aged
commercial 2010 Cummins SCR catalyst samples with focus on
mechanistic understandings

o Extend steady state distributed SCR model
— Include transient & inhibition behavior

e Demonstrate & characterize NH; & Cu-oxidation-state sensor



Global Approach for Improving Energy Security

Develop & apply advanced diagnostics for catalyst characterization to improve:
catalyst models, design, state assessment & controls for fuel-efficient engine systems
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Detailed Approach for 2013 Objectives

4 )
Spatiotemporal Intra-Catalyst Characterization

L to Enhance Performance, Control, Cost & Durability )

e Cummins-ORNL CRADA Team identifies catalyst-performance barrier
— Distributed NH; capacity is not well understood & impacts performance

Develop procedures to measure intra-SCR distributed NH; capacity

Apply diagnostics to characterize distributed SCR performance
— NH; capacity, SCR, parasitic NH; oxidation, NO & NH; oxidation

Correlate distributed NH; capacity with other performance parameters
— Compare insights with SpaciFTIR results from other DOE project

Model distributed SCR behavior in collaboration with Chalmers partners
— Based on AVL Boost

— Determine kinetic parameters from SpaciMS data

— Precompetitive model of distributed steady state SCR performance

Incorporate insights into Cummins’ proprietary models

Enable clean, fuel-efficient engine-catalyst systems



Technical Progress: Summary

o Nature of Distributed NH; Capacity (New Insights)

Correlating with distributed SCR conversion

on Model Cu-Beta Zeolite catalyst

on Commercial 2010 Cummins SAPO 34 catalyst
Control by Adsorption Isotherm

e Modeling Distributed Steady State SCR Performance

Determining kinetic parameters from SpaciMS data
Precompetitive AVL Boost distributed SCR model
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Standard Protocols Resolve SCR Reaction Parameters
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— Total NH, Capacity (TC)

— Coverage at inlet conditions
e Maximum NH; at inlet conditions
e i.e., inlet NH; concentration & Temp.
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SCR Conditions

— SS Conversion & NH; slip

— Dynamic NH, Capacity (DC)
— DC: fraction of TC used for SCR
— Unused Capacity (UC) = TC-DC

We will focus on: Total & Dynamic NH, Capacity
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NH, Coverage Distribution Imposed by Gas-Phase NH; Distribution
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e Cu-Beta Zeolite catalyst, Standard SCR

e SCR zone shifts to catalyst front at higher temperatures
— high NH; concentrations exist deeper into catalyst at lower temperature

o High NH; coverage at catalyst front where gas-phase NH; is high
— Dynamic = Total capacity in high NH; concentration front section

e Dynamic-Total separation occurs at a common NH; level (ca. 50ppm NH,)

e NH; coverage distribution changes with temperature
— but Dynamic-Total capacity separation imposed by local gas-phase NH;
— & gas-phase NH; distribution is imposed by SCR conversion distribution



Cu-SAPO-34 Catalyst Shows Similar NH; Coverage Behavior

e Comparing CRADA insights to commercial catalyst behavior
— Very different Model Cu-Beta-Zeolite & Commercial Cu-SAPO-34 catalysts
— Validate & expand applicability of CRADA findings

e Dynamic = Total capacity above same NH, level for all conditions!
— Separation at ~175ppm NH; for commercial catalyst (vs. ~50ppm for Cu-Beta-Z)
— A case where Standard & Fast SCR are similar!
— NH; coverage equilibrium reactions much faster than even Fast SCR

o Local gas-phase NH; & Adsorption Isotherm control local NH; coverage
— SCR imposes gas-phase NH; distribution & local NH; concentration
— Local gas-phase NH; & adsorption isotherm dictate local NH; coverage
— NH; coverage distribution specified by gas-phase NH; distribution & isotherm
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Isotherm & Gas-Phase NH; Distribution Set NH; Coverage Distribution

Langmuir isotherm (AG = -40kJ/moI)—@
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Adsorption isotherm indicates equilibrium-coverage variation with NH,
— Total capacity measured at inlet NH;, and decreases at higher temperatures

o Coverage variation is relatively flat in high-NH; region
— practically: Dynamic = Total capacity in this region
e Dynamic & Total capacity should separate around the isotherm knee

o SCR reduces the gas-phase NH; concentration along the catalyst length
— lower local coverage equilibrium, Dynamic < Total capacity

e Specific SCR reaction does not change the isotherm
— only changes where these zones occur spatially within the catalyst

e Adsorption isotherm shape varies with catalyst formulation
— E.g., different NH; site types, coverage dependence,..

Fractional NH; Coverage




Intra-Catalyst Measurements Enable Calculation of
Kinetic Parameters under Realistic Operating Conditions

e Based on KCK Cu-Beta-Zeolite catalyst & Standard SCR

e Kinetic parameters determined from steady state Intra-SCR SpaciMS data
— NO oxidation, NH; oxidation, NH; Standard SCR (published in Coelho thesis)
— Further demonstrates rich nature of intra-catalyst distributed (SpaciX) analysis
— Enables determining kinetic parameters under realistic conditions
— Avoids unrealistic temperatures &/or space velocity where chemistry may differ

e AVL BOOST model in good agreement with experimental measurements
— Distributed NO & NH; oxidation, & SCR
— Kinetic & equilibrium controlled temperature regimes
— Zero Parasitic Oxidation despite significant neat NH; oxidation
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Collaborations & Coordination

e Cummins

— CRADA Partner, Neal Currier (Co-Pl) e

e Chalmers (Prof. Olsson)
— SCR measurements, kinetic analysis & modeling (Xavier Auvray & Filipa Coelho)

Michigan Tech. University (Prof. Parker) CHALMERS
— SpaciFTIR analysis of Cummins 2010 SCR catalyst (Josh Pihl) mrech

Politecnico di Milano (Profs. Tronconi & Nova)
— Precompetitive study of selected SCR mechanisms
— Prof.s Tronconi & Nova to ORNL Oct. 15, 2012 :
— PoliMi PhD student working at ORNL Oct.-March, 2012 (Maria Pia Ruggeri)

CLEERS (ACE022, Wednesday 2:15pm) e
— Diagnostics, analysis & modeling coordination ww s

Institute of Chemical Technology, Prague (Prof. Marek & Dr. Ko&i)
— Precompetitive study of LNT N,O chemistry (with CLEERS)E Liu
— KONTAKT Il Grant from Czech Republic Government J\M';"I::‘]’: e
— Dr. KoCi working at ORNL April 16-20, 2012 ——h

— ICTP PhD student working at ORNL Oct.-Dec., 2012 (Sarka Bartova)

e Dissemination via Publications & Presentations
— 1 Archival Journal Publication & 12 Presentations 3




Future Work

2013 Work:
e Measure distributed chemistry of commercial SCR

— degreened & field-aged 2010 Cummins SCR samples
— Standard & Fast SCR; 200, 300 & 400°C

e Extend steady state distributed SCR model (w/ Chalmers)
— Include transient & inhibition behavior
e |nvestigate mechanistic aspects of selected SCR reactions (w/ PoliMi)
e Continue collaborations with CLEERS, PoliMi, ICT Prague & Chalmers
e Demonstrate & characterize NH; & Cu-oxidation-state sensor

2014 Work:

e Measurements to further understand commercial SCR performance
— Alternate, incremental and various methods for ageing
— Focus on insights for improved modeling, design and control

e Exercise SCR model to understand selected inhibition nature




Summary

e Relevance
— CRADA work enables improved catalyst knowledge, models, design & control
— This reduces catalyst system costs & required engine-efficiency tradeoffs
— This in turn enables improved fuel economy

Approach

— Develop & apply diagnostics to characterize catalyst nature

— Analyze data to understand mechanistic details of how the catalyst functions
— Develop improved catalyst models based on improved catalyst knowledge

Technical Accomplishments

— New insights regarding parameters controlling distributed NH3 coverage

— SpaciX data allows determining kinetic parameters under realistic operating conditions
— Steady state distributed SCR model accurately predicts catalyst performance

Collaborations
— Numerous university collaborations resulting in presentations, publications and advances
— Coordination & collaboration with other DOE projects to maximize benefit

e Future Work

— Analysis & tuning of EGR mixing model — identify mixing and model-data difference origins
— EGR Probe Improvements : interference identification & probe-to-probe variations
— Diagnostic identification & development for addressing next-generation efficiency barriers 5



Technical Back-Up Slides
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Cummins 4-Step Protocol Resolves Reaction Parameters

< Clean ><tandard SC><] NH; Saturate >< Clean >
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« Step1: NO oxidation
« Step2: SS NO, & NH; conversions, Parasitic NH; oxidation, Dynamic NH; capacity
« Step3: NO,-free NH; oxidation, Unused NH; capacity

, * Step4: NO oxidation, Total NH; capacity Total = Dynamic + Unused
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